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Introduction

Our goal

I Setup.
I Xn ∼ P. Data are coming in from the world, governed by some

density, P.
I We want to estimate p̂(x). This object will allow us to (a)

understand the scientific process underlying the world, and (b)
understand conditional relationships, since
Ê(y |x) =

∫
p̂(y |x)y dy .
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Parametric models

I Parametric models.
I Allow us to find p̂(x) using a fixed number of parameters.
I Example: Assume P is Normal. Once I know the mean, x̄ , and

variance, σ̂2
x of my data, xn, I can derive all other features of

this distribution.
I Key point. Number of parameters is fixed. Increasing the

data does not increase the number of parameters.
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Non-parametric models

I Non-parametric models.
I Allow us to find p̂(x) making fewer assumptions about the

form of the underlying distribution, P.
I Example: A histogram is one nonparametric estimate of a

probability distribution. The number of bins grows with the
number of datapoints. We will return to this fact.

I Key point. Number of parameters is determined by the size of
the training data, NOT the underlying statistical model.
Increasing the data will increase the number of parameters.

I Distribution-free? Hyperparametric?
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Histograms

Histograms, A Simple Non-parametric Estimator

I Divide domain of Xn into hypercubes (or bins), where each
side has length h.

I p̂h(xi ) = θ̂j/c for xi ∈ Bj

I i is the unit index, j is the bandwidth index.
I θj is the proportion of observations in the bin:

θ̂j = 1
n

∑n
i I (xi ∈ Bj).

I c is a normalizing constant that ensures p̂h(x) integrates to
one:

∑
j θ̂j/c = 1.
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Histograms

Histograms, visualized
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Histograms

Histograms, Problems

I The curse of dimensionality. If I divide the joint support of my
data into hypercubes, there are an exponential number of
hypercube bins. As a result,

lim
d↑

Pr(Xi ∈ Bj)→ 0, (1)

where d denotes the dimensions of my data.
I Histograms are not smooth.
I Histograms also depend on the end points of the bins, as well

as the width of the bins.

Solution: Kernel density estimation. Key point: kernels are less
locally-specific than histograms. That is, histogram bins don’t
influence each other. However, this property means that
histograms throw away information that will allow us to better
estimate p̂(x).



Gov 2002 - Section 7 - Kernels & Nonparametric Statistics

Kernels

Kernels, Introduced

I Kernel density estimation uses the distances between my
datapoints in order to assign probabilities and thus obtain
p̂(x). In words, even if I don’t have data points in some
interval of the domain of x , I can still estimate the probability
of obtaining such a point by using neighboring points.

I A kernel weights a sequence of datapoints, assigning more
weight to some datapoints than to others based on the
similarity to some target datapoint.

I In sum, kernels approximate the density of a point from P as
an average of the density around this point, as well as the
density of other points nearby, where the contribution of the
other points is weighted by their similarity to the target
observation.



Gov 2002 - Section 7 - Kernels & Nonparametric Statistics

Kernels

Kernels, Definition

I If {x1, x2, ..., xn} ∼ P, we can write p̂h(x) as:

p̂h(x) =
1

n

n∑
i=1

Kh(x ; xi ), (2)

where Kh(·) ≥ 0, K (u; q) = K (−u; q), and∫∞
−∞ K (u; q)du = 1.

I These requirements ensure that the p̂h(x) results in a proper
PDF, and that the average value of the kernel around x is 0.

I In other words, you can think if a kernel function, Kh(x ; xi ) as
similar to a scaled probability density centered around xi .
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Kernels

A Uniform (Box) Kernel
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Kernels

A Smooth Kernel
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Kernels

Bandwidth Selection
I Small values of h lead to spiky estimates (high variance) while

larger h values lead to oversmoothing (high bias).
I h controls the breadth of the kernel function, i.e. how much

my estimate, p̂(x = xi ), is influenced by the other units.
I Some researchers select h by finding the h that minimizes

approximations of the Mean Integrated Squared Error (MISE).
This is not usually tractable.

MISE(h) = E
[ ∫

(p̂h(x)− P(x))2
]
.

I Cross validation is also often used:

p̂h,i (xi ) =
1

(n − 1)

∑
j 6=i

K (Xj ,Xi ).

Select the h that gives the best pseudo-likelihood:∏n
i=1 p̂h,i (xi ).
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Kernels

Bandwidth Implications
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Applications

Application 1- Nonparametric Regression

I I want to model my outcome, y , as a function of my input
data:

Yi = m(Xi ) + εi , i = 1, 2, ..,N,

where m(X ) = E[Y |X = x ] and E[εi |X = x ] = 0.

I The problem: m(x) is unknown.

I In OLS, we impose a strong but interpretable functional form
on this conditional relationship:

Yi = Xi ;β + εi , i = 1, 2, ..,N,
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Applications

Nonparametric Regression

I In nonparametric regression, I let the data flexibly determine
the shape of m(·):

Yi = m(Xi ) + εi , i = 1, 2, ..,N,

where

m̂h(x) =

∑n
i=1 Kh(x ; xi ) · yi∑n

i=1 Kh(x ; xi )
.

I Notice that m̂h(x) is just a weighted average, where the
weights are determined by the form of Kh(·; ·) and h.

I This is a straightforward application of kernel density
estimation. Once we have p̂(x , y), we can use it to estimate
any quantity of interest (for example, Ê[Y |X = x ]).
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Kernel Regression
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Application 2 - RDD

I Regression discontinuity design (RDD) is an observational
data technique that attempts to capture the causal effect of
an intervention. It does so by exploiting a cutoff or
discontinuity above/below which some intervention is
assigned.

I By comparing units just below and just above the threshold,
we can estimate the local average treatment effect of the
intervention.

I Examples.
I Scholarship thresholds.
I Bare winners in US elections.
I Age determines pension availability.
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RDD, depicted
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Applications

RDD, depicted 2
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Local-linear & Semi-parametric RDD
I Local linear regression is often used to estimate the local

average treatment effect in an RD design. In particular, we
assume that the treatment, T is given based on a cutoff value
of Zi .

Yi = β0 + τ · Ti + β1 · (Zi − c) + εi . (3)

or
Yi = β0 + τ · Ti + m(Zi − c) + εi . (4)

Notice:
I Ti is an indicator of whether i received the treatment (was just

above/below threshold).
I c denotes the cutoff in the variable Z that leads to treatment.
I τ denotes the local average treatment effect.
I Zi − c denotes the distance of unit i from the threshold. We

control for the distance of each unit the cutoff, c .
I Notice that this is estimated only for the units within a given

bandwidth, h: c − h ≤ Xi ≤ c + h.
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Nonparametric RDD, Practical Considerations

I In practice, researchers often assume higher-order terms and
interactions as well:

Yi = β0 + τ · Ti + β1 · (Zi − c)

+ β2 · (Zi − c)2 + · · ·+ β1 · (Zi − c)p

+ β1 · (Zi − c)p · Ti + · · ·+ εi .

(5)

I Often, units will be imbalanced on background covariates
across the threshold (“sorting at the threshold”).

I Choice of bandwidth is arbitrary. In your research, show how
your results are robust to reasonable range of the bandwidths.
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