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Why Use Bayesian Statistics?



Setup and Motivation for Bayesian Statistics

• Let D denote the data, and θ denote an arbitrary parameter

vector.

Pr(θ|D) =
Pr(D, θ)

Pr(D)
;

=
Pr(D|θ) · Pr(θ)

Pr(D)
;

=
Pr(D|θ) · Pr(θ)∫
θ Pr(D|θ)dθ

.

(1)
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The Prior. Pr(θ) corresponds to initial beliefs about θ. The

properties of Pr(θ) have long been at the center of disputes about

statistics. Historical trajectory: flat priors → uninformative priors

→ weakly informative priors → informative priors.
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The Likelihood. Pr(D|θ). This object is at the central of

Frequentist statistics. In Frequentist statistics, we find the θ∗ that

maximizes the probability of having observed the data. The

problem with this is that this optimization procedure ignores

information, and is often overly sensitive to noise in the data.
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The probability of the data. Pr(D) corresponds to the

probability of the data, D. Notice that Pr(D) =
∫
θ Pr(D|θ)dθ. In

words, Pr(D) corresponds to the overall probability of observing B,

without regard to the selection of θ.

4



The Posterior. Pr(θ|D) corresponds to the posterior distribution.

It captures the new belief about θ having accounted for the data.
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Applications of Bayesian Statistics

1. Incorporate prior information into parameter estimates.

2. Obtain a distribution over θ̂, not only a point estimate.

3. Regularizing statistical models. In MLE, we find θ̂ by selecting
the value for θ̂ that maximizes the probability of seeing the
observed data. This technique is prone to overfitting.

• On overfitting. When overfitting occurs, our model will likely be sensitive

to small perturbations in our dataset: due to chance alone, one covariate

might be highly correlated with our outcome, generating extreme

estimates of θ̂. Bayesian regression models can be less sensitive to this

kind of overfitting, since our point estimate for θ̂ will be shrunk towards

the prior mean (often 0).
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Gibbs Sampling in Theory



Why use a Gibbs Sampler

• In Bayesian statistics, we want to obtain Pr(θ|D), or E[θ|D]. For

example, θ might be the weights in a Bayesian neural network, and

I want to find the posterior mean for θ given my dataset.

• If I knew the posterior analytically, I could directly use this in my

calculations. But usually, the posterior is too complicated to

obtain using analytical methods.

• As a result, Monte Carlo (i.e. simulation-based) methods must be

used. With these methods, we are going to use random numbers

to get samples from Pr(θ|D). When I have these samples in hand,

I can take the mean (to approximate E[θ|D]), or could measure

any other property of E[θ|D]. The theory of Monte Carlo methods

states that my numerical estimate of E[θ|D] will be within an ε of

the true expectation if my algorithm has converged.
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Why does Gibbs sampling work?

1. Recall that we want to generate random draws from Pr(θ|D).

2. Recall also that Pr(θ|D) ∝ Pr(D, θ) = Pr(D|θ) · Pr(θ).

3. The theory behind Gibbs sampling states that we can generate

draws from Pr(θ|D) if we can sample from Pr(θ|D) and Pr(D).

Gibbs sampling thus most applicable when Pr(D, θ) is of an

unknown form, but the conditional distributions are easier to

sample from.

4. “Gibbs sampling can be thought of as a practical implementation of

the fact that knowledge of the conditional distributions is sufficient

to determine a joint distribution” (Casella & George, 1992).
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The Gibbs sampler algorithm

Let Γ denote a p-dimensional random variable.

Γ = (Γ1, Γ2, ..., Γp)T .

1. Initialize Γ
(0)
p ∼ gp(x) for p = 1, 2, ...,P.

2. For iteration i = 1, 2, ..., n:

2.1 For component p = 1, 2, ...,P:

Γ(i)
p ∼ Pr(Γ(i)

p |Γ
(i−1)
−p ).

• This works because Pr(Γ1, Γ2, ..., ΓP) is equivalent to

Pr(Γ1|Γ2, ..., ΓP) · Pr(Γ2|Γ3, ..., ΓP) · [· · · ] · Pr(ΓP).
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Extensions of the Gibbs sampler

• Blocked Gibbs sampler. In a blocked Gibbs sampler, we sample

from the joint distribution of two or more variables conditional on

all other variables. This is a powerful technique used in some

hidden Markov models, as well as in applications of the latent

Dirichlet allocation.
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A Gibbs Sampler for Bayesian

Regression



A Gibbs Sampler for Bayesian Regression

• Assume

Yi = β0 + β1xi + εi ,

where

β0 ∼ N(0, 1/τβ0)

β1 ∼ N(0, 1/τβ1)

τ ∼ Gamma(α, β)

• Notice that α, β, τβ0 , and τβ1 are fixed hyperparameters.
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A Gibbs Sampler for Bayesian Regression, Continued

• From the Normal-Normal conjugacy, (as well as Gamma-gamma

conjugacy), we know

f (β0|β1, τ,Y1, ...,Yn) ∼ N

(
τ

nτ+τβ0

∑N
i=1(yi − β1xi ), 1

nτ+τβ0

)
f (β1|β0, τ,Y1, ...,Yn) ∼ N

(
τ
∑n

i=1(Yi−β0)xi
τ
∑n

i=1(x
2
i )+τβ1

, 1
τ
∑n

i=1(x
2
i )+τβ1

)
f (τ |β0, β1,Y1, ....,Yn) ∼

Gamma

(
α + n

2 , β + 1
2 ·
∑n

i=1(Yi − β0 − β1xi )2
)
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#hyperparameters

alpha <- 0.001

beta <- 0.001

#book keeping

n_iter <- 5000

n <- length(y) #keep track of the number of observations

#starting values for the parameters of interest

beta0 <- mean(y)#starting values for beta0

beta1 <- 0#starting value for beta1

tau <- 1
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result <- matrix(nrow = niter, ncol = 3)#matrix to store the results

for (i in 1:niter) #this loop contains the Gibbs sampler itself

{

#conditional draw of beta0

beta0 <- rnorm(1, mean = (tau/(n * tau + tau.beta0)) *

sum(y - beta1 * x),

sd = 1/sqrt(n * tau + tau.beta0))

#conditional draw of beta1

beta1 <- rnorm(1, mean = (tau * sum((y - a) * x)) /

(tau * sum(x^2) + tau.beta1),

sd = 1/sqrt(tau * sum(x^2) + tau.beta1))

#conditional draw of tau

tau <- rgamma(1, shape = alpha + n/2,

rate = beta + 0.5 * sum((y - beta0 - beta1 * x)^2))

result[i, ] <- c(a, beta1, tau)

}
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Convergence metrics



Convergence metrics

• Gelman-Rubin. “Uses parallel chains with dispersed initial values

to test whether they all converge to the same target distribution.

Failure could indicate the presence of a multi-mode posterior

distribution (different chains converge to different local modes) or

the need to run a longer chain (burn-in is yet to be completed).”

This metric uses the fact that the pooled variance should be equal

to the marginal posterior variance of θ under convergence.

• Geweke. “Tests whether the mean estimates have converged by

comparing means from the early and latter part of the Markov

chain.”

• Autocorrelation metrics. “Autocorrelation metrics capture

dependency among Markov chain samples.” It is common practice

to present autocorrelation plots when evaluating whether a sampler

has reached a stationary distribution.
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The Upshot



The Upshot

• Bayesian statistics depends on finding some joint distribution,

Pr(θ,D).

• It is often impossible to find Pr(θ,D) analytically, so Monte Carlo

methods are usually used.

• The Gibbs sampler is a common MCMC algorithm, and provides

an efficient approximation of the joint distribution, provided we are

able to sample from each of the conditional distributions.

• There are various methods for evaluating whether an MCMC

algorithm has reached its stationary distribution.
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Appendix



The Metropolis-Hastings Algorithm

• Goal: Construct a dependent Markov Chain that converges to a

stationary distribution matching the posterior of interest. In a

Markov chain, we let t(x , y) denote the probability of transitioning

(“jumping”) from state x to state y . So, we want the Markov

Chain defined by t(x , y) to have some f (x) as its stationary

distribution.

18



Requirements

• f (y) =
∑

x f (x)t(x , y) or, less generally,

f (y)t(y , x) = f (x)t(x , y). This condition is described as the

“detailed balance” or “time reversibility” condition.

• We want to find some probability distribution j(x , y) such that,

given x , we “jump” to y with probability α(x , y), and stay put at

x with probability 1− α(x , y).
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More details

• There are two possibilities.

1. y = x . In this case, f (y)t(y , x) = f (x)t(x , y) holds trivially because

f (x)t(x , x) = f (x)t(x , x).

2. y 6= x . In this case, let t(x , y) = j(x , y)α(x , y). Detailed balance gives:

f (y) · Pr(Transition from y to x) · Pr(Accept jump from y to x) =

f (x) · Pr(Transition from x to y) · Pr(Accept jump from x to y)

(2)
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More details, Continued

f (x)t(y , x)α(y , x) = f (x)t(x , y)α(x , y);

=⇒
α(x , y)

α(y , x)
=

f (y)j(y , x)

f (x)j(x , y)
,

(3)

where α(x , y) = min

(
1, f (y)j(y ,x)f (x)j(x ,y)

)
.
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